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Abstract
The effect of dimer (two-particle) interactions on the Becker–Döring model
of nucleation is investigated. Initially we consider the problem with
size-independent aggregation and fragmentation coefficients and a constant
monomer concentration. Either an equilibrium or a steady-state solution is
found: the former when fragmentation is stronger than aggregation, the latter
otherwise. By employing asymptotic techniques, the manner in which the
system reaches these states is examined. The dimer interaction is found to
accelerate the system towards the equilibrium solution, but has little impact
on the relaxation time to the steady-state solution. In cases where aggregation
is dominant, the steady-state cluster size distribution can only be determined
consistently when the manner of approach to steady state is also known. In the
terminology of asymptotic methods, one needs to know the first correction term
in order to deduce the leading-order solution. We show how this can be derived
and so at steady state we find a flux of matter to larger aggregation numbers due
to monomer interactions, with a small and decreasing reverse flux due to dimer
interactions. We then consider the case of constant density, that is allowing
the monomer concentration to vary, and investigate the effect of a strong dimer
interaction on the convergence to equilibrium. Two timescales are present and
each one is investigated. We determine the intermediate meta-stable state, the
final state and the timescales over which the system relaxes into these states.
All results are shown to agree with numerical simulations.

PACS numbers: 64.60.Qb, 02.70.Ns, 82.20.−w, 05.20.−y, 05.70.Ln

1. Introduction

Becker and Döring presented an enduring model of nucleation in 1935 [1]; clusters form
by the addition, or subtraction, of single particles (monomers) with no interaction between
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larger clusters. Such larger clusters evolve by maintaining a dynamic balance of monomer
aggregation and fragmentation. This process is modelled as a chemical reaction; denoting an
r-sized cluster by Cr , we have the reversible reaction

Cr + C1 � Cr+1. (1)

For each reaction there are two reaction rates to prescribe: we denote the forward rate by ar
and the reverse by br+1, both non-negative. Defining Jr as the net flux from cluster size r to
r + 1 and cr(t) as the concentration of clusters Cr at time t, we express the system by

ċ1 = 0 (2)

ċr = Jr−1 − Jr r � 2 (3)

Jr = arcrc1 − br+1cr+1 r � 1 (4)

where we assume ċ1 = 0, in the spirit of the original formulation [1]. Later Penrose [2]
generalized these equations by allowing the monomer concentrations to vary; this ensures the
conservation of density

ρ =
∞∑
r=1

rcr . (5)

These modified equations (3)–(5) are still referred to as the Becker–Döring equations. For
certain aggregation and fragmentation rates the existence and uniqueness of a solution to
(2)–(4) have been demonstrated by Ball et al [3] for densities below a critical value;
furthermore, this result was subsequently generalized to arbitrary initial data by Ball and
Carr [4]. The asymptotic solution for size-independent aggregation, and fragmentation, rates
has been described by Wattis and King [5]. Such is the rich structure of the Becker–Döring
equations that various aspects have been investigated, including the existence of meta-stable
solutions by Penrose [6], the aggregation-dominated regime by Carr [7] and the difficulties in
numerically modelling such meta-stable systems by Carr et al [8] and Duncan and Soheili [9].
The modelling of nucleation has proved to be applicable to a variety of circumstances such
as the self-replication of micelles and vesicles [10, 11], and the origin of RNA, which have
been studied by Coveney and Wattis [12] . Additional applications have been competitive
nucleation [13], transitional aggregation kinetics [14], the role of chemical inhibitors [15]
and monomer–monomer catalysis [16]. While being widely applicable, the Becker–Döring
equations make the restrictive assumption that only monomers may interact with clusters.
Smoluchowski [17] proposed a more general model allowing all cluster sizes to aggregate,
and for a cluster to split into uneven fragments. Blackman and Marshall [18] exploited the
Smoluchowski equations to study scaling behaviour in essentially the Becker–Döring regime,
while Brilliantov and Krapivsky [19] have used a similar approach to study the problem of
nucleation with movable monomers and immovable clusters.

Molecular dynamic simulations by Wonczak [20] on the condensation of argon suggest
that while monomer interactions dominate the dynamics, dimer (two-particle clusters)
interactions account for approximately 5% of all interactions. We follow the work of
da Costa [21] in analysing a model which allows not only monomer, but additionally dimer
interactions, which is a generalization of the Becker–Döring model. As an example we assume
size-independent aggregation and fragmentation coefficients, ar = a, br = b. The methods
used in this paper closely follow those employed by Wattis and King [5]. The model studied
then falls between that proposed by Smoluchowski and that by Becker and Döring, being more
complicated than the latter but simpler than the former.
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This introduction concludes with a description of the general dimer problem, from
which we will extract particular cases to be studied. Section 2 begins by formulating the
Becker–Döring system that has been investigated and proceeds to describe the equilibrium
solution, where fragmentation dominates. Furthermore, we analyse the approach to this
equilibrium state, including a description of the far-field asymptotics, and finish the section
by analysing the behaviour of the Lyapunov function. In section 3 we consider the regime
where aggregation dominates fragmentation, leading to a time-independent solution in which
a material continuously aggregates into increasingly large cluster sizes. We construct the
time-independent solution and describe the approach to this state and verify consistency with
the far-field asymptotics. The constant density Becker–Döring system is then investigated
in section 4, in the special case of a large dimer interaction; Maillet et al [23] reported on
molecular dynamic simulations of cationic surfactants which form micelles with a strong
contribution from the dimer interaction. The paper concludes with a discussion of the results
in section 5.

1.1. The general dimer system

In the format of chemical reactions if we permit only monomer and dimer interactions, we
include

C2 + Cr � Cr+2 (6)

as well as (1). We define âr (b̂r ) to be the forward (reverse) reaction rate for the dimer
interaction and also denote the net flux from cluster size r to r + 2 to be Kr . The infinite set
of differential equations to be studied are thus

ċ2 = J1 − J2 −K2 −
∞∑
r=1

Kr (7)

ċr = Jr−1 − Jr +Kr−2 −Kr r � 3 (8)

Jr = arcrc1 − br+1cr+1 r � 1 (9)

Kr = âr crc2 − b̂r+2cr+2 r � 1 (10)

where the choice of ċ1 produces two systems. If ċ1 = 0 then without loss of generality we
assume c1 = 1, alternatively to conserve the density, c1 must vary according to

ċ1 = −J1 −
∞∑
r=1

Jr −K1. (11)

The additional complexity the dimer interaction introduces is evident in the equation for ċ2,
(7), where the summation term couples the whole system together.

For an equilibrium solution we impose the condition that there must be no net flux of mass
in the system, and we further insist upon a detailed balance condition so that each individual
flux (9)–(10) is zero, so that the reactions (1) and (6) are balanced. With two interactions
possible, we may construct a time-independent solution in which a local dimer aggregation,
r to r + 2, is balanced by a fragmentation flux of monomers (Kr > 0 with Jr = Jr+1 = −Kr ).
However, if we remove all clusters of a particular size, r + 1, then the equilibrium state will
be disturbed, as the dimer interaction can no longer be balanced (since Jr is then positive). So
while such a system satisfies a steady-state condition, we reject it as an equilibrium solution
on the basis of detailed balancing which insists that the net flux of each interaction is zero, that
is Jr = 0 andKr = 0, ∀r . Considering the monomer fluxes to start with, we define a partition
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function Qr by arQr = br+1Qr+1 together with Q1 = 1, so that Jr = 0 is automatically
satisfied. This yields the equilibrium solution

cr = Qrc
r
1. (12)

Now we return to the dimer flux Kr and require that this equilibrium solution also satisfies
Kr = 0 ∀r . This yields an additional constraint on the forward and backward rate constants
â and b̂, namely,

âr = b̂r+2

(
b2arar+1

a1br+1br+2

)
. (13)

Hence, to define the four sets of rate coefficients (a, b, â and b̂) we have only three degrees of
freedom if the one equilibrium solution (12) is to satisfy the detailed balancing condition for
both Jr and Kr fluxes.

While not being directly used in this paper we note that the following function is a
Lyapunov function when fragmentation is stronger than aggregation:

V (c) =
∞∑
r=1

cr

(
log

cr

Qrc
r
1

− 1

)
(14)

The asymptotic analysis used here does not rely on such a function existing. But we note that
the existence of a Lyapunov function implies the uniqueness of the equilibrium solution and
furthermore that the system is certain to tend to this equilibrium solution when V is bounded
below. Since the Lyapunov function represents the free energy of the system, we use V (c) to
help interpret our results physically after the solution {cr(t)}∞t=1 has been determined.

2. Equilibrium state

2.1. Formulation

We now restrict ourselves to one particular example system. Until section 4 the monomer
concentration is assumed to be constant; the obvious generalization is to allow this to vary.
Additionally, we assume the aggregation and fragmentation rates are size-independent, namely
ar = a, br = b, âr = â and b̂r = b̂. The consequence of assuming a constant monomer
concentration is that the density of the system, ρ (5), will in general vary with time. To
simplify much of the following analysis we define a parameter, θ , which indicates the relative
strength of aggregation to fragmentation in the system:

θ = ac1

b
. (15)

Recalling from section 1.1 that to define the reaction rate coefficients we have only three
degrees of freedom, we define a parameter k which reflects the relative strength of the dimer
to the monomer interactions, and so,

â = ka b̂ = kb. (16)

2.2. Equilibrium solution

We may express the equilibrium solution in terms of θ as

cr = θr−1c1. (17)

A sensible boundary condition, on any solution, is to require that as r → ∞, cr → 0, which
for the above equilibrium configuration implies that θ < 1. If θ � 1 then we must look for
a wider class of attractors, the steady-state solutions, which will be investigated in section 3.
For the remainder of this section we assume θ < 1.
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2.3. Approach to equilibrium

Having found the equilibrium configuration we proceed further and calculate the manner in
which this state is approached. We make the substitution cr(t) = c

equil
r ψr(t) so that the

solution is separated into the time-independent final equilibrium solution, cequil
r = θr−1c1, and

a function which describes the dynamics by which this state is reached,ψr(t). To be consistent
with the boundary conditions mentioned earlier, ψr must satisfy

ψr → 1 as r → 1

ψr → 0 as r → ∞. (18)

Substituting the above expression for cr(t) into ċr (8) yields

∂ψr

∂t
= b

[
ψr−1 − ψr − θψr + θψr+1 + k

(
ψr−2 − ψr − θ2ψr + θ2ψr+2

)]
(19)

where we make the assumption that c2 has reached its equilibrium value, namely c2 = θc1.
This will be justified in the proceeding analysis as c2 equilibrates faster than larger cluster
sizes. Considering the large r region allows us to treat r as a continuous variable and so replace
ψr(t) by ψ(r, t). Expanding the ψ terms in (19) using a Taylor expansion about the point
(r, t), we obtain

∂ψ

∂t
= b

[
∂ψ

∂r
(−1 + θ + 2k(θ2 − 1)) +

1

2

∂2ψ

∂r2
(1 + θ + 4k(1 + θ2))

]
(20)

where terms up to second order have been included.
Firstly we truncate this equation and only consider the first derivatives with respect to r

and this gives a travelling wave solution ψ = H(vt − r) with speed

v = b(1 − θ)(1 + 2k + 2kθ) (21)

which is positive since θ is less than unity. To reveal the shape of the wave we must retain
the second derivatives in equation (20) and transform the r coordinate to z = r − vt − r0, to
convert to a frame of reference in which the wave is stationary, where r0 is a constant to be
determined by matching to the solution at intermediate times. Denoting ψ(r, t) = ψ̄(z, t),
we obtain

∂ψ̄

∂t
= b

2
(1 + θ + 4k(1 + θ2))

∂2ψ̄

∂z2
(22)

which is subject to matching conditions ψ̄ → 1 as z → −∞ and ψ̄ → 0 as z →
+∞. Subject to these conditions, equation (22) is satisfied by the self-similar solution
ψ̄ = 1

2 erfc
(
z
/√

2b(1 + θ + 4k(1 + θ2))t
)

and so

cr(t) = 1

2
θr−1c1 erfc

(
r − tb[1 − θ + 2k(1 − θ2)] − r0√

2bt (1 + θ + 4k[1 + θ2])

)
. (23)

Numerical simulations were performed using the Euler method to approximate the
derivatives, a time step of 0.1 was found to be sufficient to produce reliable results. Double
precision variables were used throughout and parameter values a = 0.8, b = 1.2 and k = 0.5
were chosen. The system was truncated at a maximum cluster size of 106, although we now
believe this could be reduced significantly without affecting the results. In this case, with
a phase shift of r0 = 6, the analytical and numerical results were found to match to a high
degree of accuracy.
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2.4. Far-field asymptotics

Having previously calculated the form of the transition region, we proceed further and
investigate the far-field region r/s(t) > 1, where s(t) ∼ vt is the position of the transition
region as given by the centre of the wave (23). We postulate that the concentrations in the
far-field region will be exponentially small and so apply a WKBJ asymptotic approximation
cr(t) ∼ α(r, t)c1θ

r−1 ew(r,t). Once again assuming r to be continuous we substitute this
expansion into the definition (8) of ċr . Expanding all terms to leading order we obtain

∂w

∂t
= ac1

θ
e− ∂w

∂r − b − ac1 + bθ e
∂w
∂r +

kac2

θ2
e−2 ∂w

∂r − kb − kac2 + kbθ2 e2 ∂w
∂r . (24)

We require w to take the self-similar form w(r, t) = tF (η), η = r/t , to match with the
equation for ψ (23) in the transition region. Substitution of this form into the leading order
WKBJ expansion yields

F(η)− ηF ′(η) = bθ eF
′(η) − b(1 + k)− ac1 − kac2 +

ac1

θ
e−F ′(η)

+
kac2

θ2
e−2F ′(η) + kbθ2 e2F ′(η). (25)

We use the definition of θ (15) and the Legendre transform F(η) → F̂ (η̂), η = F̂ ′(η̂), η̂ =
F ′(η) and ηη̂ = F(η) + F̂ (η) to obtain the solution

F̂ (η̂) = −b
[

1 − θ eη̂ + θ − e−η̂ + k

(
1 − c2

θc1
e−2η̂ + kac2 − θ2 e2η̂

)]
. (26)

Hence we may obtain the parametric solution by differentiating this expression to derive η and
then substituting this result into F(η) = ηη̂ − F̂ (η̂). We assume that c2 = c1θ in the far-field
region and hence obtain

η = −b(θ eη̂ − e−η̂ − 2k e−2η̂ + 2kθ2 e2η̂) (27)

F = −bη̂(θ eη̂ − e−η̂ − 2k e−2η̂ + 2kθ2 e2η̂) + b(θ eη̂ − 1 − k − θ − kθ2

+ e−η̂ + k e−2η̂ + kθ2 e2η̂). (28)

The first boundary condition this solution must satisfy is F(η) → −∞ as η → +∞ which
corresponds to matching to the limit r → ∞ where the concentrations tend to zero. If
η̂ → −∞ then η → +∞, by inspection of equation (27), furthermore this implies that
F → −∞ as required; hence the solution is consistent with this boundary condition. By
considering the form of the WKBJ expansion cr(t) ∼ α(r, t)c1θ

r−1 etF we deduce that to
match to the transition region we require F = 0 since if F 
= 0 the solution will tend to ±∞
as t → ∞. We define ηc by F(ηc) = 0 and so this parameter will reveal the position of the
transition region. Substituting η̂ = 0 into equation (28) gives F = 0 and hence we set η̂ = 0
in equation (27) to obtain

ηc = b(1 − θ)(1 + 2k + 2kθ). (29)

Since ηc = r/t this expression is the velocity of the transition region and is in agreement with
the previous analysis, namely, equation (21).

2.5. Lyapunov function

Differentiating V (c) from (14) explicitly with respect to t and substituting for ċr from (7) and
(8) we deduce that V (c) monotonically decreases, but it is not clear that a lower limit exists.
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Substituting an approximate solution cr = θr−1H(vt − r), where H is the Heaviside step
function, into (14) yields

V (c) = − 1

1 − θ
+
θvt

1 − θ
. (30)

Thus V (c) has a lower bound and hence qualifies as a Lyapunov function, and V decreases
exponentially to its equilibrium value, with a characteristic timescale of τ = 1/(vlnθ).

3. Steady-state solution

3.1. Formulation

We now consider the parameter regime where the equilibrium solution fails to be valid,
namely, the case where θ > 1. In this region, from previous work [5], we expect to find
time-independent, or steady-state, solutions. The crucial difference between a steady-state
and an equilibrium solution is that in the former we allow a net flux to flow through the system.
Hence the equations to be solved are derived simply by setting ċr = 0 ∀r , in the definitions
(7) and (8), this reduces to

0 = ac1(c2 − c1)− b(c3 − c2) + kac2
2 − kbc4 +

∞∑
r=1

(kac2cr − kbcr+2) (31)

0 = ac1cr−1 − bcr − ac1cr + bcr+1 + akc2cr−2 − bkcr − akc2cr + bkcr+2 r � 3. (32)

We impose the conditions cr � 0 and seek the weakest singularity in the limit as r → ∞.
Since (32) is a linear difference equation we assume cr = Aλr and by substitution into (32),
we derive a quartic equation for λ:

0 = (λ− 1)k

[
λ3 + λ2

(
1 + k

k

)
+ λ

(
−θ
k

− ac2

b

)
− ac2

b

]
. (33)

The four roots are easily determined in the limiting cases k � 1 and k 
 1. For k � 1 we find
λ1 = θ , λ2 = −1/k, λ3 = −akc2/(θb) and λ4 = 1. Assuming k 
 1 yields λ1 = √

ac2/b,
λ2 = −1, λ3 = −√

ac2/b and λ4 = 1. Explicitly plotting the roots, from the quartic equation,
over a wide range of parameters θ and k has shown that the roots are limited to the ranges
1 < λ1, λ2 < −1, −1 < λ3 < 0 and λ4 = 1. Clearly the physical conditions, cr � 0
and cr 
→ +∞ as r → ∞, require that |λ| � 1 and thus eliminate λ1 and λ2 as possibilities,
henceforth we denote λ3 as simply λ. So the ‘weakest singularity’ condition implies keeping
λ3 and λ4 to obtain the solution cr = A +Bλr−1; however, we note that such a solution cannot
satisfy (31). As the following calculations will confirm, it is necessary to include an additional
term to reflect the influence of the next-order terms and so we make the ansatz

csssr = A + Bλr−1 +
χr

t
. (34)

We substitute this ansatz into equation (32), and take the large-time limit; the leading-order
solution will be zero by the definition of λ. At O(1/t) we obtain the recurrence relation

ac1χr−1 − bχr − ac1χr + bχr+1 + ak(A + Bλ)χr−2bkχr − ak(A + Bλ)χr + bkχr+2

= kaχ2(A + Bλr−1)− kaχ2(A + Bλr−3) (35)

for χr . The complementary function of this equation satisfies the condition on cr (32), where
A + Bλ = c2. This allows the reuse of previous analysis; indeed χr is subject to similar
physical conditions as cr , namely χr 
→ +∞ as r → ∞. Thus we obtain

χr = Prλr +Qλr + R (36)
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Figure 1. A plot of the concentration profile of the clusters at times 500, 1000, 1500, 2000, centred
at r = 200, 400, 600 and 800, respectively, for the system parameters a = 1.2, b = 0.8 and k = 0.5
for the constant monomer case. Note the broadening of the wave at later times.

with P, Q and R as constants where Prλr is the particular solution of (35). Substitution of
this into the difference equation (35) results in an expression connecting P and χ2

P = kχ2(b − a)(λ + 1)

2kbλ5 + bλ4 − ac1λ2 − 2bkλ
. (37)

Furthermore, we impose the condition that χ1 = 0, since c1 = 1 is a given constant, and so
deduce that R = −Pλ−Qλ. Substituting r = 2 into the general solution (36), together with
the expression for R, reveals that

Q = χ2 − P(2λ2 − λ)

λ2 − λ
. (38)

So only χ2 remains undetermined in (36); this can be determined only when the full form of
the large-time asymptotical solution is known.

3.2. First-order correction theory

To gain an insight into the following calculation it is instructive to study the results of a
numerical simulation. Once again an Euler method was used but with a = 1.2, b = 0.8
and k = 0.5, a time step of 0.001 was required to produce reliable results, that is halving
this time step did not affect the results. This system was truncated at cluster size 2000,
with particles able to aggregate out of the system; that is the fragmentation rates b2001 and
b2002 were assumed to be zero. The concentration profile at times 500, 1000, 1500 and 2000
has been plotted in figure 1. As in the θ < 1 case we split the system into three regions:
(i) the lower sized clusters, which have reached their steady-state concentrations, (ii) cluster
sizes in the transition region and (iii) larger cluster sizes whose concentrations are still zero.
The numerical simulations strongly suggest the following relationship for the position of the
transition region, r = s(t), and for the concentration of c2(t) in the large-time limit:

s(t) = (ac1 − b)t (39)
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Figure 2. A plot of log(A + Bλ9 − cnum
10 (t)) against log(t) for the constant monomer case with

a = 1.2, b = 0.8 and k = 0.5. The gradient between times log t = 1495 and log t = 1995 was
found to be −1.003, confirming a 1/t form for the first correction term.

c2 = b

a
as t → ∞ (40)

the validity of these relationships will be justified in the following analysis. The combination
of (40) and c1 = 1 in the limit t → ∞ implies

A = λ− b
a

λ− 1
and B =

b
a

− 1

λ− 1
. (41)

We are now able to test the ansatz (34) for cr (t) directly against the numerics. By plotting
A + Bλ9 − cnum

10 (t), where cnum
r (t) is the numerical concentration of cluster size r at time t,

we extract the first correction term which should equal χ10/t . In figure 2 the logarithm of the
correction term is plotted against log(t) giving a gradient of −1.003 between times 1495 and
1995. This gives excellent agreement with the χr/t form of (34).

The standard first-order continuum approach approximates the system by cr (t) =
csssr H (s(t) − r), where H is the Heaviside step function located at r = s(t). In this case
we have csssr = A + Bλr for r < s(t) and cr = 0 otherwise and obtain an expression for
the density by combining this approximation with the definition (5). For large r, csssr ∼ A

so ρ ∼ s2A/2 and differentiating gives ρ̇ ∼ c∞sṡ. Another method of obtaining ρ̇ is to
differentiate (5) directly, leading to

ρ̇ = J1 +
∞∑
r=1

Jr +K1 (42)

by substitution for ċr from equations (7) and (8). Using the approximation that only two
regions are present, separated at s(t), this expression reduces to ρ̇ ∼ As(ac1 − b). By
comparing the two equations for ρ̇ we obtain s(t) ∼ (ac1 − b)t , thus confirming the result
assumed above. While this approach has successfully predicted the location of the transition
region it does not account for any sensitive behaviour there. To highlight a weakness of the
first-order continuum theoryKr has been plotted at times 500, 1000, 1500 and 2000 in figure 3,
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Figure 3. A plot of the profile of values ofKr(t) at times 500, 1000, 1500, 2000 with a = 1.2, b =
0.8 and k = 0.5 for the constant monomer case. The peak of each curve is centred on the transition
region (r = s(t)).

where the peak is centred on the transition region. From this figure it is clear that the form
of the transition region is important as this produces a large peak in the Kr profile which
otherwise would not be taken into account. However, in the preceding analysis only K1 was
required and so the simplified approach correctly predicts the speed of the transition region,
but to proceed with a more detailed analysis we must first determine its shape.

3.3. Second-order continuum theory

The approach employed in section 2.3 for the θ < 1 case can be used to determine how the
system approaches the steady-state solution. Using (34) and (36) we decompose the solution
into cr (t) = csssr ψr(t) where

csssr = A + Bλr−1 +
Prλr

t
+
Qλr

t
+
R

t
. (43)

We substitute the decomposition of cr(t) into (8), assume a continuum approximation for
r, and expand all terms about the point (r, t) and retain only the first two correction
terms. Furthermore as in section 2.3, the coordinates are transformed by z = r − s(t)

and ψ(r, t) = ψ̄(z, t), to focus on the transition region. Taking the large time limit, in which
we note that λs(t) → 0 as |λ| < 1, the leading order equation becomes

∂ψ̄

∂t
− ṡ

∂ψ̄

∂z
= (b − ac1)

∂ψ̄

∂z
+

1

2
(b + ac1 + 8kb)

∂2ψ̄

∂z2
. (44)

The ∂ψ̄

∂z
terms cancel, as in this frame of reference the transition region is stationary, again

confirming (39). The remaining terms have the same form as (22) and so produce the solution

ψ(r, t) = 1

2
erfc

(
r − t (ac1 − b)√
2b(θ + 1 + 8k)t

)
. (45)

To test this result we have plotted, in figure 4, cr(t) = csssr ψ(r, t) against r alongside the
numerical values of cr(t) at time t = 1000; clearly the difference is small, lending weight to
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Figure 4. The steady-state solution, csssr , and the numerical values for cr (t) plotted for a range of
r at time 1000 with a = 1.2, b = 0.8 and k = 0.5 for the constant monomer case. The two cases
are almost indistinguishable.

the analysis; furthermore the discrepancy tends to zero in the large time limit. In summary we
now have the form of the solution in the large-time asymptotic domain, namely,

cr(t) = 1

2

(
A + Bλr−1 +

Prλr

t
+
Qλr

t
+
R

t

)
erfc

(
r − t (ac1 − b)√
2b(θ + 1 + 8k)t

)
(46)

as t → ∞ with r − (ac1 − b)t = O
(
t

1
2
)
. However, P, Q and R depend on χ2 which is as yet

unknown, also we have yet to show that the dimer equation (31) is satisfied by this solution.
Before we can assess the consistency of (31) we must focus on evaluating the sum∑∞

r=1Kr using (46); the form of cr+2 can be obtained from (46)

cr+2 = 1

2

(
A + Bλr+1 +

P

t
((r + 2)λr+2) +

Q

t
(λr+2) +

R

t

)
erfc

(
r − (ac1 − b)t√

βt
+

2√
βt

)
(47)

where for simplicity we denote β = 2b(θ + 1 + 8k). Expanding the erfc function using a
Taylor series about the point r − (ac1 − b)t/

√
βt , we obtain from (10)

Kr = kb

[
Bλr

(
1

λ
− λ

)
+
P

t
(rλr − (r + 2)λr+2) +

Q

t
(λr − λr+2)

aχ2

bt

(
A + Bλr−1

+
P

t
(rλr − λ) +

Q

t
(λr − λ)

)]
erfc

(
r − (ac1 − b)t√

βt

)
+

[
A + Bλr+1

+
P

t
((r + 2)λr+2) +

Q

t
(λr+2) +

R

t

]
2kb√
βπt

exp

(
−
(
r − (ac1 − b)t√

βt

)2
)
.

(48)

Returning to (31), we now consider the summation of this expression from r = 1 to ∞,
which we can split into two terms. Since the speed of the outgoing wave is proportional to t,
whereas the width of the wave is proportional to

√
t , the erfc function in the first term is well
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Figure 5. The correction term χr = Prλr + Qλr + R from asymptotic analysis and cnum
r −

(A + Bλr−1), the numerical value, are plotted against r, in the constant monomer case with
a = 1.2, b = 0.8 and k = 0.5. A favourable comparison supports the analytical approach taken.

approximated by a step function located at s(t), in the large time limit, and so the sum of this
term may be confined r = 1 to s(t) and the erfc function eliminated. To leading order this
provides a contribution of kB(1 + λ) + kaχ2A(ac1 − b) to

∑∞
r=1Kr . Turning to the latter

term in equation (48), since we are in the large time limit this places the Gaussian at a large
value of r, implying that terms of r = O(1) will be exponentially small, and allows us to
take the large r limit of the pre-multiplying factor. Additionally, by virtue of the fact that
the Gaussian is located at large r, we can approximate the sum by an integral and extend the
limits to ±∞ as the contributions due to r < 1 will be exponentially small. Performing all
the above calculations yields a contribution of 2kbA. Combining the two contributions, we
finally obtain

∞∑
r=1

Kr = kB(1 + λ) + kaχ2A(ac1 − b) + 2kbA. (49)

The significance of retaining the first correction term in the expansion for cr is the addition
of 2kbA, from the latter term in equation (48), which cannot be found from a first-order
continuum theory.

Substituting the expression (49) into (31) gives

χ2 = c1(ac1 − b)− b2

a
(1 + k) + bA(1 − k) + bB(kλ3 + λ2 − kλ− k)

Aka(ac1 − b)
(50)

since to leading order J1 = ac2
1 −b2/a, J2 = bc1−b(A+Bλ2) andK2 = kb2/a−kb(A+Bλ3)

and P, Q, R are known constants given by (37) and (38); hence χr is fully defined by (36).
We directly compare the analytical result for χr with cnum

r − (A + Bλr−1), which is the
numerical value of the correction term, for small cluster sizes at time t = 1995. The parameter
values used were a = 1.2, b = 0.8, k = 0.5 and a time step of 0.001 with initial conditions
c1 = 1, cr = 0 for r � 2. Figure 5 shows the comparison and the agreement is good.
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3.4. Far-field asymptotics

The far-field analysis of the steady-state solution is similar to that presented in section 2.4.
Since at large r we have cr = A, in this case the WKBJ approximation is cr(t) ∼
Aα(r, t) exp(w(r, t)). The omission of θr−1c1 in the expansion transforms (24) into
∂w

∂t
= ac1 e− ∂w

∂r − b − ac1 + b e
∂w
∂r + kac2 e−2 ∂w

∂r − kb − kac2 + kb e2 ∂w
∂r (51)

and, following (25), we substitute w(r, t) = tF (η) with η = r/t to obtain

F(η)− ηF ′(η) = b eF
′(η) − b(1 + k)− ac1 − kac2 + ac1 e−F ′(η)

+ kac2 e−2F ′(η) + kb e2F ′(η). (52)

As before, we apply the Legendre transform F(η) → F̂ (η̂), η = F̂ ′(η̂), η̂ = F ′(η) and
ηη̂ = F(η)+ F̂ (η) to equation (52) and assume that c2 = b/a, the equilibrium value, to obtain

F̂ = b(1 + 2k + θ − eη̂ − θ e−η̂ − k e−2η̂ − k e2η̂) (53)
η = b(θ e−η̂ − eη̂ + 2k e−2η̂ − 2k e2η̂). (54)

As η̂ → −∞, from equation (54), we see that η → +∞ and alsoF → −∞ from equation (53);
hence the solution satisfies the boundary condition cr(t) → 0 as r → +∞. The edge of the
transition region is given by ηc, defined by F(ηc) = 0, which implies η̂ = 0 in equations (53)
and (54) and so

ηc = b(θ − 1). (55)

Since η = r/t , equation (55) reveals that the position of the transition region s(t) = (ac1−b)t ,
which confirms the earlier analysis.

3.5. Lyapunov function

For the case θ < 1 we found that V (c) was a Lyapunov function, ensuring the system
approached the equilibrium solution and here we once again investigate the behaviour of this
function. The complementary error function in cr(t) is approximated by a Heaviside step
function,H(x), to give

cr ≈
[
A + Bλr−1 +

P

t
(rλr − λ) +

Q

t
(λr − λ)

]
H(s(t)− r). (56)

By inspection we see that cr → A for 1 � r < s as t → ∞ and so with the definition of
V (c) as given in (14), we obtain

V (c) ≈
s∑
r=1

(
log

(
A

Qrc
r
1

)
− 1

)
cr . (57)

As s → ∞ the argument of the logarithm tends to zero from above, so that the logarithm
tends to −∞. Since the summation incorporates increasingly large negative values, it too
must tend to −∞ implying the non-existence of a lower bound. So although the function V is
well defined in (14), it fails to qualify as a Lyapunov function since it is not bounded below.

4. Constant density systems

4.1. Formulation

In this section we study the modified Becker–Döring equation similar to that proposed by
Penrose [2], in that the density ρ is held constant and the monomer concentration is allowed
to vary, but we further allow dimers to interact. The system has the form
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Figure 6. In the constant mass formulation of the Becker–Döring system, a strong dimer interaction
leads to two timescales in the problem. This is illustrated by the behaviour of c2, as plotted against
log(t) with a = 0.0024, b = 0.0016 and k = 1000 with an initial state of c2 = 1 and all other
concentrations being zero. Clearly, after a fast phase the system remains in a pseudo-equilibrium
until finally a slower phase forces the system to its final equilibrium state.

ċ1 = −J1 −
∞∑
r=1

Jr −K1 (58)

ċ2 = J1 − J2 −K2 −
∞∑
r=1

Kr (59)

ċr = Jr−1 − Jr +Kr−2 −Kr r � 3 (60)

where Jr and Kr are defined previously, (9) and (10). To make analytical progress we take
the fragmentation and aggregation coefficients ar, br, âr and b̂r to be independent of cluster
size, that is âr = â, ar = a, br = b and b̂r = b̂. Once again the detailed balanced condition
requires that â = ka and b̂ = kb. We will investigate the case of a strong dimer interaction, by
assuming k 
 1, which causes all even-sized clusters to rapidly evolve to a local equilibrium,
and similarly for odd-sized clusters, after which the system slowly tends towards a global
equilibrium. To highlight the diverse timescales we assume that only dimer clusters are
present initially, that is c1 = 0, c2 = 1 and cr = 0 for r � 2. To illustrate the two timescales
embedded in the problem, we performed a numerical simulation similar to that outlined in
section 3.1. Parameter values of a = 0.0024, b = 0.0016, k = 1000 and a time step of
0.001 were used and, in figure 6, c2 is plotted against log(t) showing the widely differing
timescales present. After an initial fast phase, over which the system separately equilibrates
the even-sized clusters and the odd-sized clusters, there follows an equilibration over a much
longer timescale, as can be seen by the second drop in c2.

To investigate these timescales we systematically derive those variables which are
unaffected by the dimer interaction, by analysing the rate of change of a quantity G given by
G = ∑∞

r=1 grcr . This uses the weak form
∞∑
r=1

gr ċr =
∞∑
r=1

(gr+1 − gr − g1)Jr +
∞∑
r=1

(gr+2 − gr − g2)Kr (61)
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a similar result for the standard Becker–Döring equations was used by Ball et al [3] in a highly
detailed analysis of that system. By considering equation (61) we deduce that those variables
which are unaffected by the dimer flux must satisfy the recurrence relation gr+2 = gr + g2,
which has the solution

gr = 1
2 rg2 +

(
1
2g1 − 1

4g2
)
(1 − (−1)r) (62)

and defining g1 and g2 will select a solution. If g1 = 1 and g2 = 2 then we recover the density
(5) from (62), namelyG = ρ, which is a constant of motion (ρ̇ = 0). However, if g1 = 1 and
g2 = 0 then we obtain G = No, whence we define a new variable No(t) to be the number of
clusters consisting of odd numbers of monomers

No =
∞∑
r=1

c2r−1. (63)

So No is the only other variable not to depend on the dimer flux and hence will be a constant
over the fast timescale, which is governed solely by the dimer interaction, but will vary on the
slow timescale. We make use of these features of No to investigate the separate timescales.

4.2. Fast timescale

Over the fast timescale we make the simplifying assumption that there are no monomer
interactions as the dynamics proceeds solely by the dimer interactions. We therefore postulate
that a = b = 0, and hence all the Jr fluxes are zero, whilst retaining non-zero â and b̂;
therefore

ċ1 = −K1 (64)

ċ2 = −K2 −
∞∑
r=1

Kr (65)

ċr = Kr−2 −Kr. (66)

While it is not possible to solve these equations for all t, it is possible to calculate the pseudo-
equilibrium state that the system relaxes to on the fast timescale. When the dimer interactions
have equilibrated the pseudo-equilibrium solution has the form

cr+2 =
(
â

b̂
c2

)
cr = θ̂2cr (67)

where θ̂ =
√
âc2/b̂; we note that this variable is time-dependent. This relation reduces the

problem to a two-dimensional system and so we denote the pseudo-equilibrium state in terms
of two parameters, c1 and c2,

c2r = c2θ̂
2r−2 c2r+1 = c1θ̂

2r . (68)

From equations (63), (64) and (66) we deduce Ṅo = 0, that is No is a constant of motion as
predicted by the analysis in section 4.1. Using the expressions for the equilibrium solution
(68) and the definition of No (63), we further derive

No = c1

(
1

1 − θ̂2

)
. (69)

Performing a similar calculation for the other constant of motion, ρ defined in equation (5),
reveals that

ρ = 1

(1 − θ̂2)2

(
2c2 + c1(1 + θ̂2)

)
. (70)
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Eliminating c2 from this equation, by using θ̂ , and then combining the result with equation (69)
gives an expression for θ̂ solely in terms of known constants of motion

θ̂2 =
(2ρ + 2b̂/â)±

√
4b̂2/â2 + 8ρb̂/â + 4N2

o

2(ρ +No)
. (71)

Hence the pseudo-equilibrium state is fully defined, as described for a particular case below.
Using the values for â, b̂ and ρ from figure 6, namely, â = 0.0024, b̂ = 0.0016 andρ = 2, (71)
yields θ̂2 = 0.4514 where we have rejected the solution which predicts a larger density than
exists in the system. Utilizing c2 = θ̂2b̂/â we obtain c2 = 0.3009, the pseudo-equilibrium
concentration after the fast phase but prior to the slow phase, and this value is in agreement
with the data in figure 6. At the end of the fast phase, the odd-sized clusters remain at
effectively zero concentrations (c2r+1 = O(1/k) ∀r) whilst the even-sized clusters are given
by (68). With knowledge of c2 and θ̂2 the pseudo-equilibrium concentration of any cluster
size is revealed by exploiting equations (68) and (69).

Continuing with the numerical example given above we interpret the two timescales
physically via the Lyapunov function, which represents a free energy of the system. We
calculate the Lyapunov function at three times, initially (at t = 0, where V = V0), at the end
of the fast phase (where t = O(1/k) and V = Vf ) and at equilibrium, which occurs at the
end of the slow phase (on a timescale of t = O(1); as t → ∞V → V∞), and find that

V0 = −1.405 Vf = −2.154 V∞ = −2.819. (72)

Since the absolute size of the drop over the fast and slow phases is of the same order of
magnitude, we deduce that both timescales represent equally important processes; however,
the rate of change of free energy (V̇ ) will be much greater in the first timescale than the latter.

4.3. Slow timescale

Having identified a slow timescale over which the system finally reaches a global equilibrium,
we now proceed to make some assumptions valid in this region and aim to evaluate the
relaxation time. The large dimer interaction will ensure that upon reaching the slow timescale,
the Kr terms will all be zero. This provides a connection between all the even-sized clusters,
and similarly the odd-sized clusters, in the following manner:

c2r =
(ac2

b

)r−1
c2 c2r−1 =

(ac2

b

)r−1
c1. (73)

To calculate the slow timescale, we linearize around the global equilibrium solution by
c1(t) = c̄1 + χ1(t) and c2(t) = c̄2 + χ2(t), where c̄1 and c̄2 are the equilibrium values of
c1 and c2, respectively. Investigating how the functions χ1(t) and χ2(t) decay to zero reveals
the appropriate timescale.

Equations (73) reduce the system from an infinite array to a two-dimensional system. By
substituting the expressions (73) into (5), we obtain

c1 = ρ(b − ac2)
2 − 2b2c2

b(b + ac2)
(74)

and so using the linearization c1 = c̄1 +χ1 and c2 = c̄1 +χ2 in this equation, assuming χ1 � c̄1

and χ2 � c̄2, we gain an expression linking χ1 and χ2, namely

χ1 =
(

2a2ρc̄2 − 2abρ − 2b2 − abc̄1

b2 + abc̄2

)
χ2. (75)

Recalling from section 4.1 that No is the only variable to be unaffected by the fast phase,
we shall make use of it to calculate an estimate of the slow timescale. It is possible to evaluate
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Ṅo in two ways and equating these gives an expression for ċ2. Firstly we evaluateNo directly
from the definition (63), equations (73) and (74) to give

No = ρ(b − ac2)
2 − 2b2c2

(b − ac2)2
. (76)

Differentiating this with respect to time gives

Ṅo =
(−2b2(b + ac1 + ac2)

(b + ac2)(b − ac2)2

)
ċ2. (77)

Alternatively, we use Ṅo = −2
∑∞

r=1 J2r−1 and the definition of Jr in (9) to obtain Ṅo =
2b
(
bc2 − ac2

1

)/
(b − ac2); equating this with equation (77) gives

ċ2 =
(
ac2

1 − bc2
)
(b + ac2)(b − ac2)

b(b + ac1 + ac2)
. (78)

Finally, using c1 = c̄1 + χ1 and c2 = c̄2 + χ2 in this equation, and using equation (75) to
eliminate χ1 implies χ̇2 = −χ2/τ , where

τ = b2(b + ac̄1 + ac̄2)

(ac̄2 − b)
(
4a3ρc̄1c̄2 − 4a2bρc̄1 − 4ab2c̄1 − 2a2bc̄2

1 − b3 − ab2c̄2
) (79)

and so the slow timescale is τ .
To compare this result with the numerical simulations, as detailed in section 3.1, we

calculate the gradient of log
(
cnum

2 − c̄2
)

against t, where cnum
2 is the value of c2 from a

numerical simulation, which will equal 1/τ if the analysis is valid. Fixing ρ = 2 and
a = 0.002 we compared this gradient for a range of b values and the results were found to
match to a high degree of accuracy.

4.4. Arbitrary rate coefficients

For the constant density case with arbitrary rate coefficients, a similar evolution is observed,
namely a fast phase where the even-sized clusters self-equilibrate and the odd-sized clusters
self-equilibrate, but the even- and odd-sized clusters are not in equilibrium with each other.
Following a meta-stable timescale, there follows a slower phase of kinetics during which the
even- and odd-sized clusters reach a global equilibrium solution.

As described above, the only quantities which do not alter on the fast phase are the
total density, which does not vary over the slow timescale either, and the number of odd-
sized clusters, No(t). Thus at the end of the fast phase of aggregation and fragmentation,
No(t) = No(0). Over the fast phase, the kinetics are governed by (64)–(66). In the slow
phase of the process, all the dimer fluxesKr are always zero, and so the kinetics are formally
governed by the normal Becker–Döring equations (3)–(5).

However, the conditions that Kr = 0 constitute recurrence relations which relate all the
even-sized clusters to c2 and all the odd-sized clusters to some combination of c2 and c1.
Solving these recurrence relations yields a reduction of the full system of equations for
{cr(t)}∞r=1 to a two-dimensional system for {c1(t), c2(t)} by way of

ceven
r (t) = Qr

(√
b2c2(t)

a1

)r
codd
r (t) = Qr

(√
b2c2(t)

a1

)r−1

c1(t). (80)

The two equations which are then used to determine the evolution of c1, c2 are (i) conservation
of density

/ =
∞∑
k=1

2kQ2k

(
b2c2(t)

a1

)k
+ (2k − 1)Q2k−1

(
b2c2(t)

a1

)k−1

c1(t) (81)
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and (ii) the evolution of No(t), which satisfies

Ṅo = −2
∞∑
k=1

J2k−1. (82)

During the slow phase, the monomer concentration is given by

c1(t) = / −∑∞
k=1 2kQ2k(b2c2(t)/a1)

k∑∞
k=1(2k − 1)Q2k−1(b2c2(t)/a1)k−1

(83)

which enables the kinetics to be written in terms of a first-order ordinary differential equation.
This is obtained by calculating Ṅo in two ways: firstly Ṅo = dNo

dc2
ċ2, whereNo(c2) is given by

No(c2) =
(

/ −∑∞
k=1 2kQ2k(b2c2/a1)

k∑∞
k=1(2k − 1)Q2k−1(b2c2/a1)k−1

) ∞∑
k=1

Q2k−1

(
b2c2

a1

)r−1

. (84)

Secondly, (82) can be used, substituting (80) into the right-hand side to write the sum of fluxes
purely as a function of c2, using (83) to eliminate c1.

Note that the reduction (80) can also be used to determine c1(t), c2(t) at the end of the
fast phase. SinceNo(t) remains constant over the fast phase, during the meta-stable timescale,
No(t) = No(0). Thus during the meta-stable phase, c1 = No(0)

/∑∞
k=1 Q2k−1(b2c2/a1)

k−1,
with c2 being determined by the density criterion (81).

5. Conclusion

The work of Wonczak [20] prompts the investigation into nucleation models where not only
monomers interact, but also dimers. In such systems a detailed balancing condition limits the
rate coefficients ar, br, âr and b̂r to only three degrees of freedom. There exists a Lyapunov
function when fragmentation is stronger than aggregation, forcing the system towards the
unique equilibrium configuration given by the partition function. Having presented the general
dimer system, the scope of this paper is restricted to the case of size-independent aggregation
and fragmentation coefficients. Initially, the system is further limited to the case of a constant
monomer concentration, the consequence of which is a non-constant density. If fragmentation
is stronger than aggregation, we determine the equilibrium configuration and the manner in
which the system approaches this state. A transition region separates equilibrated cluster
sizes and those with zero concentration, and this region travels at a constant velocity towards
increasingly large cluster sizes. Our results show that the speed of this transition region is
increased by the presence of the dimer interaction and so the system will equilibrate faster than
if only monomer interactions were permitted. Additionally, the dimer interaction broadens
the width of the transition region. The far-field analysis performed supports the expression for
the velocity of the transition region. The steady-state solution has a constant positive flux due
to monomer interactions and a decreasing (in time) negative flux due to dimer interactions.

The equilibrium solution fails to predict a physical solution when aggregation is stronger
than fragmentation and in this regime the system is found to approach a steady-state solution
where mass is constantly transported to larger cluster sizes. We have determined the steady-
state solution; which requires knowledge of the first correction term in order to deduce the
leading-order solution. A transition region, similar to that in the equilibrium case, was found;
however, the dimer interaction only broadens this region; it has no impact on its velocity.
Again the far-field analysis confirms the velocity of the transition region. Certain theories,
such as that proposed by Langer [22], assume that clusters aggregate to a critical size and
continue to grow at the same steady rate and hence aim to evaluate this rate. We make a link
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to such theories by proposing that the nucleation rate is the flux at infinite cluster size; without
dimer interactions we find that J∞ = (ac1 − b)c1. Allowing dimer interactions complicates
this, in that there are then two fluxes, one due to cluster–monomer interactions (J ) and one
due to cluster–dimer interactions (K). The monomer flux is then J∞ = (ac1 − b)c∞ and the
dimer flux is K∞ = kc∞(ac2 − b). As t → ∞, c2 → b/a and therefore K∞ → 0 so that
the nucleation rate is due solely to monomer–cluster, rather than dimer–cluster, interactions.
Counter intuitively, since c∞ < c1 the dimer interaction reduces the monomer flux at infinity
and hence reduces the nucleation rate. In the approach to the steady state, the dimer flux
causes a back flow of mass to smaller aggregation numbers, an effect which decays at an
anomalously small rate (K∞ ∼ O(1/t) as t → ∞).

The constant density system has been examined assuming a strong dimer interaction.
For an example of such a system, the reader is referred to the work of Maillet et al [23]
where micelles form with a strong influence from the dimer interaction. Two timescales were
identified, initially the odd-sized clusters rapidly equilibrated, and similarly for the even-sized
clusters, after which the system tends towards a global equilibrium. By considering the
number of clusters of odd sizes, No, which is constant over the fast phase but varies over
the slow timescale, we determined the intermediate meta-stable state, the final state and the
timescales over which the system relaxes into these states. The fast timescale is governed
by the strength of the dimer interaction whereas the slow timescale has been found to have
a complex dependence on the reaction rate coefficients, the density and the final equilibrium
state.

There are many directions for further work; for example, it may be instructive to consider
a system with more general rate coefficients. Alternatively, the effect of trimer (three particle
clusters) interactions can be investigated where the detailed balancing condition would only
allow four degrees of freedom when prescribing the six reaction rate coefficients. In this case
we speculate that due to ċ2 and ċ3 coupling the system together the behaviour would be both
complex and rich in structure; details of this will appear in [24].
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